Pod-2, along with pod-1, defines a new class of genes required for polarity in the early Caenorhabditis elegans embryo.
نویسندگان
چکیده
The asymmetric division of the one-cell Caenorhabditis elegans zygote gives rise to two cells of different size and fate, thereby establishing the animal's anterior--posterior (a-p) axis. Through genetics, a number of genes required for this polarity have been characterized, but many components remain unidentified. Recently, our laboratory discovered a mutation in the pod-1 gene (for polarity and osmotic defective) that uniquely perturbed polarity and osmotic protection. Here, we describe a new C. elegans polarity gene identified during screens for conditional embryonic lethals. Embryos in which this gene has been mutated show a loss of physical and developmental asymmetries in the one-cell embryo, including the mislocalization of PAR and POD-1 proteins required for early polarity. Furthermore, mutant embryos are osmotically sensitive, allowing us to designate this gene pod-2. Thus, pod-2, along with pod-1, defines a new class of C. elegans polarity genes. Genetic analyses indicate that pod-2 functions in the same pathway as pod-1. Temperature-shift studies indicate that pod-2 is required during oogenesis, indicating that aspects of embryonic polarization may precede fertilization. pod-2 mutant embryos also exhibit a unique germline inheritance defect in which germline identity localizes to the wrong spot in the one-cell embryo and is therefore inherited by the wrong cell at the four-cell stage. Our data suggest that pod-2 may be required to properly position an a-p polarity cue.
منابع مشابه
The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode caenorhabditis elegans.
Establishment of anterior-posterior (a-p) polarity in the Caenorhabditis elegans embryo depends on filamentous (F-) actin. Previously, we isolated an F-actin-binding protein that was enriched in the anterior cortex of the one-cell embryo and was hypothesized to link developmental polarity to the actin cytoskeleton. Here, we identify this protein, POD-1, as a new member of the coronin family of ...
متن کاملTwo cytochrome P450s in Caenorhabditis elegans are essential for the organization of eggshell, correct execution of meiosis and the polarization of embryo
The role of lipids in the process of embryonic development of Caenorhabditis elegans is still poorly understood. Cytochrome P450s, a class of lipid-modifying enzymes, are good candidates to be involved in the production or degradation of lipids essential for development. We investigated two highly similar cytochrome P450s in C. elegans, cyp-31A2 and cyp-31A3, that are homologs of the gene respo...
متن کاملA genome-wide RNAi screen for enhancers of par mutants reveals new contributors to early embryonic polarity in Caenorhabditis elegans.
The par genes of Caenorhabditis elegans are essential for establishment and maintenance of early embryo polarity and their homologs in other organisms are crucial polarity regulators in diverse cell types. Forward genetic screens and simple RNAi depletion screens have identified additional conserved regulators of polarity in C. elegans; genes with redundant functions, however, will be missed by...
متن کاملMEX-3 interacting proteins link cell polarity to asymmetric gene expression in Caenorhabditis elegans.
The KH domain protein MEX-3 is central to the temporal and spatial control of PAL-1 expression in the C. elegans early embryo. PAL-1 is a Caudal-like homeodomain protein that is required to specify the fate of posterior blastomeres. While pal-1 mRNA is present throughout the oocyte and early embryo, PAL-1 protein is expressed only in posterior blastomeres, starting at the four-cell stage. To be...
متن کاملCDK-1 and Two B-Type Cyclins Promote PAR-6 Stabilization during Polarization of the Early C. elegans Embryo
In the C. elegans embryo, formation of an antero-posterior axis of polarity relies on signaling by the conserved PAR proteins, which localize asymmetrically in two mutually exclusive groups at the embryonic cortex. Depletion of any PAR protein causes a loss of polarity and embryonic lethality. A genome-wide RNAi screen previously identified two B-type cyclins, cyb-2.1 and cyb-2.2, as suppressor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 233 2 شماره
صفحات -
تاریخ انتشار 2001